

# M. Tech. Mch - Sem I. Bharatiya Vidya Bhavan's

# Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

Endsem November 2017

Max. Marks: 100

Class: M.Tech Thermal Engg.

Semester: I

Name of the Course: Design & Analysis of Thermal Systems

Instructions:

1. Question No.1 is compulsory.

2. Attempt any four out of remaining six questions.

3. Assume suitable data if necessary.

Duration: 3 Hrs

Program: M.Tech Mechanical with Thermal Engg. subjects

Course Code: MTTH103

Master file.

| Q.<br>No.                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Module<br>No./CO.<br>No. | Max.<br>Marks |
|-------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|
| Q.1                                       |                  | Write Notes on any four:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |               |
|                                           | (A)              | Explain in brief Analysis and Synthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01/01                    | 05            |
|                                           | (B)              | Computer Aided Design of Thermal Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02/01                    | 05            |
| rounding of Marine on Best Sam Loy, while | (C)              | Numerical Modeling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03/03                    | 05            |
| ertebrotis to the control                 | (D)              | Different curve fitting methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04/03                    | 05            |
| er en blen er .                           | (E)              | Role of depreciations in economics of thermal systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/04                    | 05            |
| -                                         | (F)              | Explain any one search method in optimization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 06/04                    | 05            |
| Q.2                                       | $\overline{(A)}$ | Describe the methodology used in formulation of a thermal system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02/02                    | 10            |
| 11. Mary 10                               | (B)              | What is importance of validation in mathematical modeling? What are the different methods for validating a problem?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03/03                    | 10            |
| Q.3                                       | (A)              | List the characteristics of thermal systems? Give one example of each?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01/02                    | 10            |
| (Space servings and high cloud half)      | (B)              | What are different material properties and material characteristics for thermal systems?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02/01                    | 10            |
| Q.4                                       | (A)              | The state of the s | 03/03                    | 10            |
| 47,000                                    | (B)              | Using the data from table given below for $v_g$ at $t = 0$ , 40 and $60^{\circ}$ C develop a second degree equation by  (a) Lagrange Interpolation Method  (b) Method of least squares (Contd. on next page)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 04/03                    | 10            |

# Tech. 8 Mech - Sem I Bharatiya Vidya Bhavan's

# Sardar Patel College of Engineering



(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

|     |     | Also find $v_g$ ar                                                                                                                               | t 50 °C using                                                                                           | both methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      | En control of the con |       |    |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
|     |     | t °C                                                                                                                                             | 0                                                                                                       | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |    |
|     | 1   | $v_{\alpha} k J/k \varphi$                                                                                                                       | 206.3                                                                                                   | 19.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.679                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 10 |
| Q.5 | (A) | A stationary experiences a placed in a w theorem for t drag which w kinematic vis                                                                | drag of 4N. vind tunnel. I he given probvill give dynascosities of ai                                   | Another sphere of the property | oups using Bust velocity of the lar conditions and the                                                               | ty of $1.6\text{m/s}$ he diameter is ckingham $-\pi$ he air and the . The ratio of density of air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04/03 | 08 |
|     | (B) | derive the ser The monthly end of first y                                                                                                        | ries present w<br>cost of energ<br>rear). Taking                                                        | orth factor (page 15 for a facility the loan of \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (a).<br>ty is \$ 3,000 (<br>16,000 for th                                                                            | (starting at the nis payment at the number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05/04 | Võ |
|     |     | months requi                                                                                                                                     | red to repay t                                                                                          | he amount.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |    |
| Q.6 | (A) | be purchased<br>delivery and<br>starting at the<br>be obtained to<br>of \$20,000 a<br>unit is \$75,0<br>disposed of<br>compounded<br>attractive? | I. A new unit 5 annual pay e end of the foy paying \$60 at the end of 000 and that at the end annually. | can be obtainents of \$25, irst year. A up 1,000 at deliverach year. The of the used of 10 years Which alternace.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ned by paying 000 at the end sed and refurbery and 10 and e salvage value one is \$50,00. The interestative is final | orage unit is to g \$100,000 on d of each year, pished unit can nual payments the of the new 00, both being the trate is 9%, ancially more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 05/04 | 12 |
|     | (B) | at -5°C, with<br>that has to<br>requirements<br>function that                                                                                    | n the ambient<br>be cooled a<br>for an ac                                                               | t at 25°C. If the fixed, list contable designated for completed for contable designations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | he dimension<br>t the design<br>ign. Suggest                                                                         | kW of cooling<br>s of the region<br>variables and<br>an objective<br>Also, give the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07/04 | 08 |
| Q.7 | (A) | Explain Obje                                                                                                                                     | ective function<br>at are often m                                                                       | n and Constra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ints? Give dif<br>minimized in                                                                                       | ferent physical optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06/04 | 10 |
|     | (B) | essentially or receives a ra                                                                                                                     | ne of concent<br>w material co                                                                          | rating materiansisting of 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | re 2, the operal A. The conc<br>% A by mass<br>, respectively                                                        | entrator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07/04 | 10 |



## M. Tech. Mech. Sem I Bharatiya Vidya Bhavan's

## Sardar Patel College of Engineering



(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

of the raw material is designated  $x_1$  metric tons per day and the 60% and 80% products are designated  $x_2$  and  $x_3$ , respectively. The capacity of the loading facility imposes the constraint:

$$2x_2 + 3x_3 \le 60$$

The prices are:

| Amount               | X <sub>1</sub> | X <sub>2</sub> | X3   |
|----------------------|----------------|----------------|------|
| Price per metric ton | ₹ 40           | ₹ 80           | ₹120 |

Setup the objective function and give the constratins.

Using Simplex method determine the combination of raw material and products that results in maximum profit for the plant.



Figure 1: Steady state heat conduction with internal heat generation



Figure 2: Concentrator in Processing Plant





Firstyeer M. Tech (Thermal) sem I. Bharatiya Vidya Bhavan's

# Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058



#### **END SEM** Nov 2017

Program: M.Tech in Thermal Engineering Class: First Year M. Tech. (Thermal)

Course code: MTTH102

Name of the Course: Energy Resources and conversion Management

Date: Nov 2017 Duration: 3 Hr. Max. Points: 100 Semester: I

Master file.

#### **Instructions:**

- Question No 1 is compulsory. Attempt any four questions out of remaining six.
- Answers to all sub questions should be grouped together.
- Use of Steam tables and Mollier Diagram is permitted.
- Assume suitable data if necessary.

| Q1 | a        | Define the following terms:                                                                                                                                                                 | Max.<br>Points | CO<br>No. | Module<br>No. |
|----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|---------------|
|    | 1.       | <ul> <li>i. Hour angle</li> <li>ii. Declination</li> <li>iii. Surface azimuth angle</li> <li>iv. Zenith angle</li> <li>v. Air Mass</li> </ul>                                               | (5)            | 1         | 3             |
|    |          | In the absence of friction and other irreversibility, can a heat engine have an efficiency of 100%? explain                                                                                 | (5)            | 2         | 4-            |
|    | c)<br>d) | What are the main sources of irreversibility in an actual Rankine cycle? Write a note on energy storage by Hydrogen                                                                         | (5)<br>(5)     | 2<br>3    | 5<br>6        |
| Q2 | a)       | The gravimetric analysis of a hydrocarbon fuel indicates 86% C and 14% H. Determine % analysis of combustion products by mass and by volume when 50% excess air is supplied for combustion. | (12)           | 1         | 1             |
|    | b)       | With a neat sketch, explain the working of a Fluidized Bed Boiler. What are its advantages                                                                                                  | (8)            | 2         | 5             |
| Q3 |          | Calculate the overall loss coefficient for an absorber with a single glass cover having the following specifications: Plate-to-cover spacing 25mm Plate emittance 0.95                      | (16)           | 1         | 3             |
|    |          | Ambient air and sky temperature $10^{0}$ C Wind heat transfer coefficient $10 \text{ W/m2}$ $^{0}$ C Mean plate temperature $100^{0}$ C Collector tilt $45^{0}$                             |                |           |               |
|    | (        | Glass emittance 0.88                                                                                                                                                                        |                |           |               |
|    | l        | Back-insulation thickness 50mm insulation conductivity 0.045 W/m $^{0}C$                                                                                                                    |                |           |               |
|    |          |                                                                                                                                                                                             |                |           |               |

|    |          | M. Tech. Thermal Sem I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |   |          |
|----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|----------|
|    |          | Collector bank length 10m and width 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |          |
|    |          | Collector thickness 75mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |   |          |
|    |          | Edge insulation thickness 25mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |   |          |
|    |          | Cover temperature 48°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |          |
|    | b)       | Calculate the sunset hour angle in Mumbai on 3 <sup>rd</sup> March and 3 <sup>rd</sup> Jun.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2    | 1 | 3        |
|    |          | also calculate corresponding solar time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2    | 1 | )        |
|    | c)       | What would be the solar constant for Venus? Mean Venus – sun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |   |          |
|    |          | distance is 0.72 times the mean sun – earth distance. Assume sun to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2    | 1 | 3        |
|    |          | a black body emitter at 5777 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |   |          |
| Q4 | a)       | Two solar water heating systems have the following cost comparison.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |   |          |
|    | Ţ        | Which system is more economical if the money is worth 10 percent per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |   |          |
|    |          | year?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (10) | 1 | 7        |
|    |          | Cost Components System (A) System (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |   |          |
|    |          | First cost (Rs.) 20,000 30,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |   |          |
|    |          | Uniform end of year maintenance (Rs.) 4,000 3,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |   |          |
|    |          | Salvage value (Rs.) 500 1,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |   |          |
|    |          | Service life, years 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |   |          |
|    | b)       | With a neat sketch explain the principle of energy storage by flywheel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (10) | 3 | 6        |
|    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | _ | _        |
| Q5 | a)       | Explain Hydrodynamic power generation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (10) | 2 | 5        |
|    | b)       | Explain refinery process in detail with neat sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (10) | 1 | 2        |
| Q6 | a)<br>b) | In a combined power and process plant the boiler generates 21,000 kg/h of steam at a pressure of 17 bar and temperature 230° C. A part of the steam goes to a process heater which consumes 132.56 kW, the steam leaving the process heater 0.957 dry at 17 bar being throttled to 3.5bar. the remaining steam flows through an h.p. turbine which exhaust at a pressure of 3.5 bar. The exhaust steam mixes with the process steam before entering the 1. P. Turbine which develops 1337.5 kW. At the exhaust the pressure is 0.3 bar and the steam is 0.912 dry. Draw the line and T-S diagram of the plant and determine  i. The steam quality at the exhaust of the h.p. turbine ii. The power developed by the h.p. turbine iii. The isentropic efficiency of the h.p. turbine Write a note on Clean Development Mechanism (CDM) | (12) | 2 | <i>5</i> |
| Q7 | a)       | A lump of ice with a mass of 1.5 kg at an initial temperature of 260 K melts at the pressure of 1 bar as a result of heat transfer from the environment. After some time has elapsed the resulting water attains the temperature of the environment. After some time has elapsed the resulting water attains the temperature of the environment, 293 K. Calculate the entropy production associated with this process. The latent heat of fusion of ice is 333.4 kJ/kg, the specific heat of ice and water are 2.07 and 4.2 kJ/kg K respectively, and ice melts at 273.15 K                                                                                                                                                                                                                                                           | (12) | 2 | 4        |
|    | b)       | Explain biogas production method in detail with neat sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (8)  | 1 | 2        |

# M. Tech . Thermal . Sem I

### **Data Sheet**

$$Nu_L = 1$$
;  $Ra_L \cos \beta < 1708$ 

$$Nu_L = 1 + 1.446 \left( 1 - \frac{1708}{Ra_L \cos \beta} \right); 1708 < Ra_L \cos \beta < 5900$$

$$Nu_L = 0.157 (Ra_L \cos \beta)^{0.285}; 9.23 \times 10^4 < Ra_L \cos \beta < 10^6$$

| Temperature<br>t<br>°C | Density<br>ρ<br>kg/m³ | Viscosity                | Kinematic<br>Viscosity<br>v<br>m²/s | Thermal<br>Diffusivity<br>\alpha<br>m <sup>2</sup> /s | Prandtl<br>Number<br>Pr | Specific<br>Heat<br>c<br>J/kgK | Thermal<br>Conductivity<br>k<br>W/mK |
|------------------------|-----------------------|--------------------------|-------------------------------------|-------------------------------------------------------|-------------------------|--------------------------------|--------------------------------------|
| DRY AIR                |                       |                          |                                     |                                                       |                         |                                |                                      |
| 50                     | 1.584                 | $14.61 \times 10^{-6}$   | $9.23 \times 10^{-6}$               | $12.644 \times 10^{-4}$                               | 0.728                   | 1013                           | 0.02035                              |
| - 40                   | 1.515                 | $15.20 \times 10^{-6}$   | $10.04 \times 10^{-6}$              | $13.778 \times 10^{-3}$                               | 0.728                   | 1013                           | 0.02117                              |
| - 30                   | 1.453                 | $15.69 \times 10^{-6}$   | $10.80 \times 10^{-6}$              | $14.917 \times 10^{-6}$                               | 0.723                   | 1013                           | 0.02198                              |
| - 20                   | 1.395                 | $16.18 \times 10^{-6}$   | $11.61 \times 10^{-6}$              | $16.194 \times 10^{-6}$                               | 0.716                   | 1009                           | 0.02279                              |
| - 10                   | 1.342                 | $16.67 \times 10^{-6}$   | 12.43 × 10-6                        | 17.444 × 10 <sup>-4</sup>                             | 0.712                   | 1009                           | 0.02361                              |
| o                      | 1.293                 | $17.16 \times 10^{-6}$   | $13.28 \times 10^{-6}$              | 18.806 × 10 <sup>-6</sup>                             | 0.707                   | 1005                           | 0.02442                              |
| 10                     | 1.247                 | $17.65 \times 10^{-6}$   | 14.16 × 10 <sup>-6</sup>            | 20.006 × 10 <sup>-6</sup>                             | 0.705                   | 1005                           | 0.02512                              |
| 20                     | 1.205                 | $18.14 \times 10^{-6}$   | 15.06 × 10 <sup>-6</sup>            | 21.417 × 10 <sup>-6</sup>                             | 0.703                   | 1005                           | 0.02593                              |
| 30                     | 1.165                 | $18.63 \times 10^{-6}$   | 16.00 × 10-6                        | 22.861 × 10 <sup>-6</sup>                             | 0.701                   | 1005                           | 0.02675                              |
| 40                     | 1.128                 | $19.12 \times 10^{-6}$   | $16.96 \times 10^{-6}$              | $24.306 \times 10^{-6}$                               | 0.669                   | 1005                           | 0.02756                              |
| 50                     | 1.093                 | $19.61 \times 10^{-6}$   | 17.95 × 10-6                        | $25.722 \times 10^{-6}$                               | 0.698                   | 1005                           | 0.02826                              |
| 60                     | 1.060                 | $20.10 \times 10^{-6}$   | 18.97 × 10⁻⁵                        | $27.194 \times 10^{-6}$                               | 0.696                   | 1005                           | 0.02896                              |
| 70                     | 1.029                 | $20.59 \times 10^{-6}$   | 20.02 × 10 <sup>-6</sup>            | $28.556 \times 10^{-6}$                               | 0.694                   | 1009                           | 0.02966                              |
| 80                     | 1.000                 | 21.08 × 10 <sup>-6</sup> | $21.09 \times 10^{-6}$              | $30.194\times10^{-6}$                                 | 0.692                   | 1009                           | 0.03047                              |
| 90                     | 0.972                 | 21.48 × 10-6             | $22.10 \times 10^{-6}$              | 31.889 × 10 <sup>-6</sup>                             | 0.690                   | 1009                           | 0.03128                              |
| 100                    | 0.946                 | 21.87 × 10-6             | $23.13 \times 10^{-6}$              | 33.639 × 10 <sup>-6</sup>                             | 0.688                   | 1009                           | 0.03210                              |
|                        | ŧ                     |                          | i                                   | 1                                                     |                         |                                |                                      |

| $\cos \theta = \sin \delta \sin \phi \cos \beta$ $-\sin \delta \cos \phi \sin \beta \cos \gamma$ $+\cos \delta \cos \phi \cos \beta \cos \omega$ $+\cos \delta \sin \phi \sin \beta \cos \gamma \cos \omega$ $+\cos \delta \sin \beta \sin \gamma \sin \omega$ | $G_{an} = G_{an} \left( 1 + 0.033 \cos \frac{360  \text{n}}{365} \right)$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| $\cos \theta = \cos \theta_2 \cos \beta + \sin \theta_2 \sin \beta \cos(\gamma_2 - \gamma_1)$                                                                                                                                                                  | $\delta = 23.45 \sin \left( 360 \frac{284 + n}{365} \right)$              |



# M. Tech. Mech. Sem I. Bharatiya Vidya Bhavan's

## Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

#### END SEMESTER EXAMINATION,

November 2017

Program: M. Tech. (Mechanical) Thermal Engineering

Date: 20/11/2017

Duration: 3 hrs.

Max.Marks: 100

Semester: I

Course code: MTTH101

Name of the Course: Transport Phenomena

**Instructions:** 

Question 1 is compulsory. Attempt any FOUR questions out of SIX.

Make any suitable assumption if needed.

Draw neat diagrams where ever necessary.

Answer to all sub questions should be grouped together.

Use of HMT data book is permitted.

Master dile.

| Q.<br>No |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Max<br>Mark | CO<br>No. | Mod.<br>No. |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|-------------|
| Q1       | (a) What is transport phenomenon in context to a thermal system? Discuss different transport quantities associated to thermal system in detail.                                                                                                                                                                                                                                                                                                 | 8           | 2         | 1           |
|          | (b) What is meant by exergy? Derive the expression for exergy loss in process executed by closed system & open system. Calculate the decrease in available energy when 20 kg of water at 90°C mixes with 30 kg of water at 30°C, the pressure being taken as constant and the temperature of the surroundings being 10°C. Take C <sub>p</sub> of water as 4.18 kJ/kg K.                                                                         | 12          | 1         | 1           |
| Q2       | (a) Explain the development of boundary layer along a thin flat & smooth plate held parallel to uniform flow. In boundary layer theory, a boundary layer can be characterized by any of the following quantities i. Boundary layer thickness ii. Displacement thickness iii. Momentum thickness. How do these quantities differ in their physical as well as mathematical definitions?                                                          | 10          | 1         | 5           |
|          | <ul> <li>(b) Air at 20°C flows past an 800mm long plate at a velocity of 45m/s. If the surface of the plate is maintained at 300°C, Determine: <ol> <li>The heat transferred from the entire plate length to air taking into consideration both laminar and turbulent portion of the boundary layer.</li> <li>The percentage error if the boundary layer is assumed to be turbulent from very leading edge of the plate.</li> </ol> </li> </ul> | 10          | 3         | 6           |
| Q3       | (a) Consider two long, horizontal parallel plates with a viscous incompressible fluid placed between them. The two plates moves in two opposite direction with two same constant velocities. Starting with the navier-stokes equation, determine an expression for the velocity profile for laminar flow between two plates. Also estimate maximum and average velocity.                                                                        | 10          | 3         | 4           |

|    | M Tech. Mech. Sem I                                                                                                                                                                                                                                                                                                                                                                                                         |    |   | * . |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-----|
|    | (b) What is the critical radius of insulation? How the expression for critical radius is obtained for a cylinder? Consider a pipe at a constant temperature whose radius is greater than the critical radius of insulation. Someone claims that the rate of heat loss from the pipe has increased when some insulation is added to the pipe. Is this claim valid? If yes then suggest the method to minimize the heat loss. |    | 4 | 6   |
| Q4 | (a) The velocity distribution in the boundary layer of a flat plate is prescribed by the relation $\frac{u}{U_{\infty}} = \sin\left(\frac{\pi y}{2\delta}\right)$ Use momentum integral equation to develop an expression for boundary layer thickness, wall shear stress, skin friction coefficient, drag force on one side of the plate & the drag coefficient in terms of Reynolds number.                               |    | 3 | 5   |
|    | (b) How the head losses during flow of fluid through pipe are classified? Estimate the loss of heads that would take place in the system shown in the figure. How the losses can be minimized?                                                                                                                                                                                                                              | 10 | 4 | 4   |
| Q5 | <ul> <li>(a) The velocity components in a 2D incompressible flow field are expressed as  u = y³/3 + 2x - x²y</li></ul>                                                                                                                                                                                                                                                                                                      | 10 | 3 | 2   |
|    | <b>(b)</b> Derive the expression for momentum conservation equation in differential form.                                                                                                                                                                                                                                                                                                                                   | 10 | 1 | 2   |
|    | (a) What are the semi-empirical theories of turbulence? Explain the concept of mixing length introduced by Prandtl. State the relationship between turbulent shearing stress and mixing length. Derive the expression for Prandtl's universal velocity distribution.                                                                                                                                                        | 14 | 1 | 3   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                             | 6  | 1 | 6   |

| ()7 | M. Tech. Mech. Sem I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|
| Q7  | (a) With sufficient illustration answer following questions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14 | 11 | 17 |
|     | i. Fick's Law of Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |    |
|     | ii. Equimolar Counter Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    | 1  |
|     | The state of the s |    |    |    |
|     | (b) State the laws of thermodynamics with proper illustration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7  | 2  | 1  |
|     | &explanation. How the concept of energy & entropy does emerge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1  | 1  | 1  |

## PhD Civil/Mech. Engg. Bharatiya Vidya Bhavan's

## SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)

SubjectCode-PhD101

Nov 2017

Total Marks: 100

Duration: 3 Hours

Class/SEM: Ph.D. Civil/Mech. Engineering

Subject: Research Methodology

Attempt any Five questions out of seven questions

Master file.

- Figures to the right indicate full marks.
- Assume any suitable data if necessary.
- Attach the Graph to the same page where you solve the relevant problem

| Que.No. | Question Sta         | itement                                                                                 |                                                                              | napan manga paga paga laki sakat mga kacambaka yang permunungan pada pada pada pada pada pada pada pa | Marks | Module | CO  |
|---------|----------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------|--------|-----|
| Q1A     |                      |                                                                                         |                                                                              | for automatic washing                                                                                 | 10    | M5     | CO4 |
|         | machines It          |                                                                                         |                                                                              |                                                                                                       |       |        |     |
|         | then finishes        | the parts on di                                                                         | illing, shaping,                                                             | and polishing machines.                                                                               |       |        |     |
| 1       |                      |                                                                                         |                                                                              | tively. are Rs. 8, 10 and                                                                             |       |        |     |
|         | Rs. 14. all pa       | arts made can b                                                                         | e sold. Casting                                                              | s for parts A, B and C,                                                                               |       |        |     |
| -       | respectively of      | osts Rs.5 Rs.6                                                                          | and Rs.10. Costs                                                             | s per hour to run each of                                                                             |       |        |     |
|         | the three ma         | chines are Rs.                                                                          | 20 for drilling,                                                             | Rs,30 for shaping. and                                                                                |       | ě      |     |
|         | Rs.30 for pol        | ishing. The cap                                                                         | acities ( parts pe                                                           | r hour) for each part on                                                                              |       |        |     |
|         | each machine         | are shown in th                                                                         | e following Tabl                                                             | e:                                                                                                    |       |        |     |
|         |                      | panel his hour state an armount of Fee hour states                                      |                                                                              |                                                                                                       |       |        |     |
|         | Machine              |                                                                                         | Capacity per                                                                 | hour                                                                                                  |       |        |     |
|         |                      | Part A                                                                                  | Part B                                                                       | Part C                                                                                                |       |        |     |
|         | Drilling             | 25                                                                                      | 40                                                                           | 25                                                                                                    |       |        |     |
|         | Shaping              | 25                                                                                      | 20                                                                           | 20                                                                                                    |       |        | ı   |
|         | Polishing            | 40                                                                                      | 30                                                                           | 40                                                                                                    |       |        |     |
|         | The manager          | of the company                                                                          | wants to know                                                                | how many of each type                                                                                 |       |        |     |
|         |                      |                                                                                         |                                                                              | rofit for the hour's run.                                                                             |       |        |     |
| 0.17    | Formulate the        | above problem                                                                           | as a Linear Prog                                                             | ramming Problem.                                                                                      |       |        |     |
| Q1B     |                      | ally following L                                                                        |                                                                              |                                                                                                       | 10    | - M5   | CO4 |
|         | $9X_1 + 5X_2 \ge 45$ | $70 X_1 + 1110 X_2$                                                                     | Subject to                                                                   |                                                                                                       |       |        |     |
|         | $7X_1 + 9X_2 \ge 31$ |                                                                                         |                                                                              |                                                                                                       |       |        |     |
|         | $5X_1 + 3X_2 \le 1$  |                                                                                         |                                                                              |                                                                                                       |       |        |     |
|         | $7X_1 + 9X_2 \le 18$ |                                                                                         |                                                                              |                                                                                                       |       |        |     |
|         | $2X_1 + 4X_2 \le 10$ | 000                                                                                     |                                                                              |                                                                                                       |       | ]      |     |
|         | $X_1, X_2 \ge 0$     |                                                                                         |                                                                              |                                                                                                       |       |        |     |
|         |                      |                                                                                         |                                                                              |                                                                                                       | 60    |        |     |
|         |                      |                                                                                         |                                                                              |                                                                                                       |       |        |     |
|         |                      | entrages, min of Workshop delants transport and gave magaziness of parameter, desputing | ndalah pamaha a kanasayan kahalahanah sa |                                                                                                       |       |        |     |

Ph.D. Civil/Mech. Eng.

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           | · ·                                                                                                 | ne number of                                                                                                                      |                                                                                   |                                                                                            |                                         |   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           | en by follov<br>for above c                                                                         | ving table. Co                                                                                                                    | ompute                                                                            | optimum time                                                                               | e ior                                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| optimal as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | signment                                                                                  | MI MOOVE C                                                                                          | asc.                                                                                                                              |                                                                                   |                                                                                            |                                         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Men —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * L                                                                                       | M                                                                                                   | N                                                                                                                                 | 0                                                                                 | P                                                                                          |                                         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Jobs↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |                                                                                                     |                                                                                                                                   |                                                                                   |                                                                                            |                                         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                         | 6                                                                                                   | 11                                                                                                                                | 16                                                                                | 9                                                                                          |                                         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                         | 8                                                                                                   | 16                                                                                                                                | 19                                                                                | 9                                                                                          |                                         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                         | 13                                                                                                  | 21                                                                                                                                | 21                                                                                | 13                                                                                         |                                         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                         | 6                                                                                                   | 9                                                                                                                                 | 11                                                                                | 7                                                                                          |                                         | ĺ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                        | 11                                                                                                  | 16                                                                                                                                | 26                                                                                | 11                                                                                         |                                         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| concludes Whether the if no tests drilling prosuccess or Thus.  1] If succe 2] If test and 3] if no test Cost and residual residu | that there he test she s are unde ogramme r failure i essful test re failed t st are carr | e are 65: 35 ows the posertaken at a or out the dan considere are carried the expectation out, expe | g programme chance of fur sibility of ult. Il, the compartilling prograd dependent out expectation if success ectation of success | ther test<br>imate su<br>any coul<br>imme, l<br>on the<br>on of suc<br>in drillir | showing success or not of still pursual kelihood of storegoing states is 75:25 ag is 25:75 | eess.<br>even<br>e its<br>final<br>ges. |   | Catalogue (Marie Catalogue |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | de as louow                                                                                         | 3                                                                                                                                 |                                                                                   |                                                                                            |                                         |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Outcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                         | se as lonow                                                                                         | 5                                                                                                                                 | ; ~                                                                               | present valu                                                                               | e                                       |   | Widows and Control of the Control of |
| Success v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                                                     | 3                                                                                                                                 | ; ~                                                                               | present valu                                                                               | e                                       |   | 7-11-11-11-11-11-11-11-11-11-11-11-11-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | with prior                                                                                | test.                                                                                               | 3                                                                                                                                 | in Rs                                                                             |                                                                                            | e                                       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Success v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | with prior                                                                                | test.                                                                                               | 5                                                                                                                                 | in Rs 105                                                                         |                                                                                            | le                                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Success v Success v Failure w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | with prior without pr                                                                     | test. ior test                                                                                      | 3                                                                                                                                 | in Rs 105 125 -55                                                                 |                                                                                            | le                                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Success v Success v Failure w Failure w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | with prior without pr ith prior t                                                         | test. ior test est                                                                                  | or test show                                                                                                                      | in Rs 105                                                                         |                                                                                            | le                                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Success v  Success v  Failure w  Failure w  Sale of E  success                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | with prior without pr ith prior t ithout pri xploitatio                                   | test. ior test est or test n Rights Pri                                                             |                                                                                                                                   | in Rs 105 125 -55 -45                                                             |                                                                                            | le                                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Ph.D. Civil / Med. Engg

| Q3A  | Refer the Follov                                                                                                                                                                                   | wing transp                                                                                                    | ortatio                                | -               | blem.         |                                               | -                |             | :      | 10  | M5   | CO4 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|---------------|-----------------------------------------------|------------------|-------------|--------|-----|------|-----|
|      | has three plants A,B,C and two markets X and Y. Production cost of A,B,and C is Rs 1500,1600 and 1700 per piece respectively. Sale price in X and Y are Rs 4400 and 4700 respectively. Demand in X |                                                                                                                |                                        |                 |               |                                               |                  |             |        |     |      |     |
|      |                                                                                                                                                                                                    |                                                                                                                |                                        |                 |               |                                               |                  |             |        |     |      |     |
|      | 1 ~                                                                                                                                                                                                |                                                                                                                |                                        |                 |               | pectiv                                        | ely. I           | Jeman       | d in X |     |      |     |
|      | and Y 3500 and                                                                                                                                                                                     |                                                                                                                |                                        |                 |               | 2000                                          | اممما            | 4000        |        |     |      |     |
|      | Production capa                                                                                                                                                                                    |                                                                                                                |                                        |                 |               |                                               | and              | 4000        | pieces |     |      |     |
|      | respectively. Tra                                                                                                                                                                                  |                                                                                                                | cost a                                 | re as i         | OHOW          | /s.<br>  Y                                    |                  | ********    |        |     |      |     |
|      | From /To                                                                                                                                                                                           | X                                                                                                              |                                        |                 |               |                                               |                  |             |        |     |      |     |
|      | A                                                                                                                                                                                                  | 100                                                                                                            |                                        |                 |               | 300                                           |                  |             |        |     |      |     |
|      | B                                                                                                                                                                                                  | 200                                                                                                            |                                        |                 |               |                                               |                  |             |        |     |      | j   |
| ()2D |                                                                                                                                                                                                    | 150                                                                                                            |                                        | _ 11            | T2:           | 250                                           |                  | 41          | 41.    | 10  | 3.45 | 000 |
| Q3B  | The sales of war                                                                                                                                                                                   | ter pumps i                                                                                                    | s as r                                 | onows           | s. Fine       | a the                                         | sale I           | or the      | month  | 10  | M5   | CO2 |
|      |                                                                                                                                                                                                    |                                                                                                                | M. Develop the regression              |                 |               |                                               |                  |             | 7      | CO3 |      |     |
|      | Months 1                                                                                                                                                                                           | 2   3                                                                                                          | 4                                      | 5               | 6             | /                                             | 8                | 9           | 10     |     |      |     |
|      |                                                                                                                                                                                                    | 33   37                                                                                                        | 39                                     | 42              | 46            | 48                                            | 50               | 55          | 58     |     |      |     |
|      | [000]                                                                                                                                                                                              |                                                                                                                |                                        |                 |               |                                               |                  |             |        |     |      | 1   |
| Q4A  | Heavy Engineer                                                                                                                                                                                     | ing Divisio                                                                                                    | n use                                  | to lo           | ad a          | plate                                         | for be           | ending      | in the | 10  | М3   | CO3 |
|      | process of fabric                                                                                                                                                                                  | cating Press                                                                                                   | ure ve                                 | ssel.           | A tear        | n war                                         | ts to            | reduce      | Cycle  |     |      |     |
|      | time in minutes                                                                                                                                                                                    |                                                                                                                |                                        |                 |               |                                               |                  |             |        |     |      |     |
|      | where the loadin                                                                                                                                                                                   | ••                                                                                                             |                                        |                 |               |                                               |                  |             |        |     |      | -   |
|      | lines for 15 lc                                                                                                                                                                                    |                                                                                                                |                                        |                 |               | -                                             |                  |             | i      |     |      |     |
|      |                                                                                                                                                                                                    |                                                                                                                |                                        |                 |               |                                               |                  |             |        |     |      |     |
|      | Sr.No.                                                                                                                                                                                             | improve loading process. Assume any suitable data if necessary.  Sr.No. Plate loading Plate loading Plate load |                                        |                 |               |                                               |                  |             |        |     |      |     |
|      |                                                                                                                                                                                                    | time                                                                                                           | -                                      |                 | time for time |                                               | for              |             |        |     |      |     |
|      |                                                                                                                                                                                                    | machine A                                                                                                      |                                        | ,               | hine l        |                                               | 1                | chine       | 1 1    |     |      |     |
|      | 1.                                                                                                                                                                                                 | 22                                                                                                             |                                        | 25              |               |                                               | 32               |             |        |     |      |     |
|      | 2.                                                                                                                                                                                                 | 26                                                                                                             |                                        | 21              | K             |                                               | 21               |             |        |     |      |     |
|      | 3.                                                                                                                                                                                                 | 28                                                                                                             |                                        | 23              |               |                                               | $\frac{21}{23}$  |             |        |     |      |     |
|      | 4.                                                                                                                                                                                                 | 21                                                                                                             |                                        | $\frac{23}{24}$ |               | ************                                  | $\frac{23}{34}$  |             |        |     |      |     |
|      | 5.                                                                                                                                                                                                 | 24                                                                                                             | ·····                                  | $\frac{24}{26}$ |               |                                               | $\frac{134}{21}$ |             |        |     |      |     |
|      |                                                                                                                                                                                                    | 29                                                                                                             |                                        | 32              |               | ······································        | 21               |             |        |     |      |     |
|      | 6.                                                                                                                                                                                                 |                                                                                                                |                                        |                 |               |                                               |                  |             |        |     |      |     |
|      | 7.                                                                                                                                                                                                 | 30                                                                                                             |                                        | 35              |               | ***************                               | 32               |             |        |     |      |     |
|      | 8.                                                                                                                                                                                                 | 37                                                                                                             |                                        | 21              |               |                                               | 42               |             |        |     |      |     |
|      | 9.                                                                                                                                                                                                 | 27                                                                                                             |                                        | 23              |               | Prompto de contrata a qualificat de la contra | 38               | <del></del> |        |     |      |     |
|      | 10.                                                                                                                                                                                                | 23                                                                                                             |                                        | 21              |               |                                               | 39               |             |        |     |      |     |
|      | 11.                                                                                                                                                                                                | 26                                                                                                             |                                        | 21              |               |                                               | 40               |             |        |     |      |     |
|      | 12.                                                                                                                                                                                                | 29                                                                                                             | ······································ | 21              |               |                                               | 23               |             |        |     |      |     |
|      | 13.                                                                                                                                                                                                | 27                                                                                                             |                                        | 24              |               |                                               | 24               |             |        |     |      |     |
|      | 14.                                                                                                                                                                                                | 25                                                                                                             |                                        | 26              |               |                                               | 20               |             |        |     |      |     |
|      | 15.                                                                                                                                                                                                | 24                                                                                                             |                                        | 23              |               |                                               | 23               |             |        |     |      |     |
| Q4B  | A test of the by Hindustan Cable of X Bar = 7750 that a mean BS                                                                                                                                    | corporation                                                                                                    | ı shov                                 | ved a i         | nean          | break                                         | ing s            | strengt     | h [BS] | 10  | M4   | CO3 |

Ph.D. civil / Mech. Engg.

| Q5A | A population is and $N3 = 3000$ . s3=5.How shou strata, if we war                      | Respective stan ld a sample of: | the strata so that $N$ dard deviations a size $n = 84$ be a | $T_1 = 5000$ , $N_2 = 2000$<br>are: $s_1 = 15$ , $s_2 = 18$ and llocated to the three oportionate sampling | 10 | M2     | CO1,<br>CO2 |
|-----|----------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----|--------|-------------|
| Q5B | design?  A data of 350 L to know associate Guage R and R alpha =0.05 do machine and ac | 10                              | M4                                                          | CO3                                                                                                        |    |        |             |
|     |                                                                                        | Automatic machines              | Semi<br>Automatic<br>machines                               | Total                                                                                                      |    |        |             |
|     | Acceptable<br>Guage R&R                                                                | 14                              | 25                                                          | 39                                                                                                         |    |        |             |
|     | Not Acceptable Guage R&R                                                               | 159                             | 152                                                         | 311                                                                                                        |    |        |             |
|     | Total                                                                                  | 173                             | 177                                                         | 350                                                                                                        |    |        | 3           |
| Q6A |                                                                                        | ı. Explain each s               |                                                             | art specific to your eed of each step in                                                                   | 10 | M2     | CO2         |
| Q6B |                                                                                        |                                 | rature survey and                                           | l Literature Review                                                                                        | 10 | M2     | CO1         |
| Q7A | Prepare the 20 gi                                                                      |                                 |                                                             |                                                                                                            | 10 | M2, M3 | COI         |
| Q7B | How to write Re                                                                        |                                 |                                                             |                                                                                                            | 10 | M1     | CO1         |

# M. Tech. Thermal Engq. Sem I. Bharatiya Vidya Bhavan's





# Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

#### **End Semester Exam** Nov 2017

Course: Advanced Combustion Techniques

Max. Marks: 100

Program: M. Tech. Thermal Engineering

**Instructions:** 

1. Question No. 1 is a Compulsory.

2. Any FOUR from the Next Six Questions Can be Attempted

3. Assume Suitable Data Wherever Necessary.

4. Include Diagrams Appropriately.



| Sem<br>Cour | ode | : M? |  |  |
|-------------|-----|------|--|--|
| 1.          |     |      |  |  |
|             |     |      |  |  |
|             |     |      |  |  |

**Duration: 3 Hrs** 

| Q<br>No |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max.<br>Mark   | CO<br>No    | M No  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-------|
| 1.      | Answer the following questions (Any Four)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20             | 2           | 1.    |
|         | <ul> <li>A. What are the methods available to measure Laminar burning velocity of flame? Explain at least one method in detail.</li> <li>B. Explain the different zones of one-dimensional laminar premixed flame with neat sketch.</li> <li>C. What are the assumptions to be considered in laminar flame theory?</li> <li>D. What do you mean by flammability limits, quenching distance, ignition energy and flame stability?</li> <li>E. What is the utility of spray combustion in designing of liquid fuel combustor?</li> <li>F. What are the important properties require for burning characteristics? Explain.</li> </ul> |                |             |       |
| 2.      | A. Explain qualitatively how the flame is stabilized in a Bunsen burner.  B. In a stoichiometric propane and air flame, nitrogen is replaced by helium, whose original burning velocity is 45 cm/sec. Estimate the laminar burning velocity of this new stoichiometric mixture.                                                                                                                                                                                                                                                                                                                                                    | 03<br>05       | 3           | 4     |
|         | <ul><li>C. Discuss adiabatic flame temperature and specify the expressions for evaluating the same.</li><li>D. What are the special solid fuels and solid oxidizers used in combustion process?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                          | 04<br>03<br>05 | 2<br>1<br>2 | 3 2 1 |
| 3.      | A. Methane gas is issued from a tube of 0.5 mm diameter at 298 K and 0.1 MPa. Flow rate of methane gas is 5 LPM. Estimate the flame height by phenomenological analysis assuming the Lewis Number equal to one.  Take thermal conductivity of methane as 0.031 W/mk, specific heat of methane as                                                                                                                                                                                                                                                                                                                                   | 06             | 4           | 6     |
|         | <ul> <li>2.22 kJ/kgK</li> <li>B. What do you mean by diffusion flame? How is it different from premixed flame?</li> <li>C. Explain the engineering applications where the combustion is used especially for design and performance considerations for engine design.</li> </ul>                                                                                                                                                                                                                                                                                                                                                    | 04             | 2 4         | 5     |
|         | <b>D.</b> Derive the equation $\sqrt{8C} \frac{4}{3} \frac{\alpha}{S_L}$ which is used to calculate quenching diameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 05             | 3           | 4     |

|     | M. Tech. Thermal Engg. Sem I.  A. State the important properties of liquid fuels and their importance in combustion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 05     | 2  | 2   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|-----|
| . 4 | A. State the important properties of liquid fuels and their importance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |    |     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05     | 3  | 6   |
|     | techniques.  B. Discuss fluidized bed combustion. What are the advantages and limitations of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 1  |     |
|     | fluidized bed combustion?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |    | 1   |
| -   | the CTZ 1.1. If C   Engine complishing using building sas as the complishing the complishing building sas as the complishing the complishing building sas as the complishing the complishing the complishing building sas as the complishing the complishing the complishing building sas as the complishing t | 10     | 4  | 7   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    | ,   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    |     |
|     | a and it is a track to Till for a compression fallo of 10.1. Allivia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |    |     |
| İ   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0    | 1  | 1   |
|     | the leasing himing Velocity of Stolemoniculo mediane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10     | 4  | 4   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    |     |
|     | mixture. A conical flame of neight of 6 cm is established doing a port diameter of 15 mm. If it consumes 20 LPM of fuel-air mixture, determine its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |    |     |
| ĺ   | port diameter of 15 mm. If it consumes 20 El M of fact an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |    |     |
|     | velocity by area method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |    |     |
|     | P) Calculate the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |    |     |
|     | Theoretical air required per kg of given luel,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10     | 4  | 1   |
|     | in the file gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |    |     |
|     | wis Time to a restituents of flue gas with gases air for every 100 kg of fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |    | İ   |
| į   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    |     |
|     | When the Furnace Oil is as fuel and following are the constitutions by Hugon Earbon = 85.9, Hydrogen = 12, Oxygen = 0.7, Nitrogen = 0.5, Sulphur = 0.5, $H_2O$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |    |     |
|     | 0.25  Agh = 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 1  | 1   |
|     | 1 10 3 + France 000 011 == 1118 AU KUNUN P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 06     | 4  | 5   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06     | 4  | 3   |
| j.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    |     |
|     | that the leavage stons when the Diessuic in the officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |    |     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    |     |
|     | determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen is frammatic or determine whether the mixture is the kitchen in the mixture of the mixture is the kitchen in the mixture of the mixture is the mixture of the mixture is the mixture of the mixture is the mixture of the mixture of the mixture is the mixture of the mixture of the mixture of the mixture is the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of the mixture of   |        |    |     |
|     | Consider propane air mixtures are mammatic to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |    | Ì   |
|     | as ideal gas mixture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |    |     |
|     | interest of ambient pressure and temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |    |     |
|     | <b>B.</b> For igniting stoichiometric methane-air mixture at ambient pressure and temperature,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 06     | 4  | 5   |
|     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1      |    | į   |
|     | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •      |    | -   |
|     | the contraction mathematical mixing an all mixing an all mixing and all mixing and all mixing and all mixing and all mixing and all mixing and all mixing an all mixing and all mixing an all mixing an all mixing an all mixing an all mixing an all mixing and all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing and mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing and mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all mixing an all | 1      | į  |     |
|     | the pressure is reduced by three times, what will be the WHE. Assume that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |    |     |
|     | 2300 K would not change with pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |    |     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02     | 2  | 5   |
|     | C. Discuss about the physical processes that govern flammability limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02     | 2  | ~   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06     | 1  |     |
|     | D. What are the fundamental aspects of combustion? What are the applications of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f   06 | 1  |     |
|     | combustion?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |    | -   |
|     | + a d City is a questions (Any Four)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20     | 02 | - 1 |
| 7.  | A) Define and explain Heat of reaction, Heat of combustion, Heat of formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |    | '   |
|     | B) Explain the Mechanism of soot formation in a diffusion flame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    |     |
|     | B) Explain the Mechanism of Sout formation in a diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |    |     |
|     | C) Explain the Liquid fuel combustion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1      |    |     |
|     | D) Explain the Effects of chemical and physical variables on burning velocity  Note that factors to be considered for burners.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r      | į  |     |
|     | E) State the Burner Design Factors. What are the factors to be considered for burner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -      |    |     |
|     | locations?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i      |    |     |



**Instructions:** 

Course code: MTTH114

#### Bharatiya Vidya Bhavan's

### Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058



#### END SEMESTER EXAMINATION,

November 2017

Program: M.Tech. (Mechanical) Thermal Engineering

Duration: 3 hrs. Max. Marks: 100

Date: 29/11/2017

Name of the Course: Energy Storage Systems

Semester: I

Master file.

Question 1 is compulsory. Attempt any FOUR questions out of SIX.

Make any suitable assumption if needed.

• Draw neat diagrams where ever necessary.

• Answer to all sub questions should be grouped together.

| Q.<br>No |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Max<br>Mark | CO<br>No. | Mod.<br>No. |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|-------------|
| Q1       | (a) Define energy & state problems associated with load leveling. Discuss the methods used to reduce the magnitude of variations in energy demand.                                                                                                                                                                                                                                                                                                                                                                   | 10          | 2         | 1           |
|          | (b) How the energy is stored in portable electronic devices? Discuss the storage of energy in mobiles and laptops.                                                                                                                                                                                                                                                                                                                                                                                                   | 10          | 1         | 2           |
| Q2       | (a) What is available energy? How it is calculated for a steady flow system? In a turbine the air expands from 7 bar, $600^{\circ}$ C to 1 bar, $250^{\circ}$ C. During expansion 9 kJ/kg of heat is lost to the surroundings which is at 1 bar, $15^{\circ}$ C. Neglecting kinetic energy and potential energy changes, determine per kg of air: i. The decrease in availability ii. The maximum work iii. The irreversibility For air, take: $C_p = 1.005 \text{ kJ/kg K}$ , $h = C_pT$ , where $C_p$ is constant. | 12          | 3         | 3           |
|          | (b) State and explain Quality of energy & Law of degradation of energy.                                                                                                                                                                                                                                                                                                                                                                                                                                              | 08          | 3         | 3           |
| Q3       | (a) Which characteristics of phase changing materials makes them suitable for TES? Differentiate between organic and inorganic phase changing material.                                                                                                                                                                                                                                                                                                                                                              | 10          | 1         | 4           |
|          | (b) What benifits do energy storage systems offer? Explain in detail long term or seasonal energy storage, daily and weekly energy storage.                                                                                                                                                                                                                                                                                                                                                                          | 10          | 1         | 1           |
| Q4       | (a) Elaborate the concept of Entropy. How thermal and configurational entropy is differentiated? Explain temperature dependance of Gibb's free energy, enthalpy and entropy.                                                                                                                                                                                                                                                                                                                                         | 10          | 3         | 5           |

# M. Tech (Mech) Sem I-

|            | (b) What is the principle of storage of energy in a flywheel? Explain storage of energy in flywheel used in automotives.                                             | 10 | 1 | 6 |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|
| Q5         | (a) What are biofuels? Enlist the generations of biofuels & discuss them in detail with their respective applications.                                               | 10 | 1 | 5 |
|            | <ul> <li>(b) Discuss in brief:</li> <li>1. Reserve batteries</li> <li>2. Primary Batteries vs Secondary Batteries</li> </ul>                                         | 10 | 1 | 7 |
| Q6         | (a) Summarise the energy stored in biomass. Compare between hard biomass, living biomass and synthetic liquid fuels. Which one is superior and why?                  | 10 | 4 | 5 |
|            | (b) How the hydrogen can be produced and stored? Which factors are to be considered while designing safe hydrogen storage unit.                                      | 10 | 1 | 6 |
| <b>Q</b> 7 | <ul> <li>(a) Illustrate in detail answers of following questions:</li> <li>i. Ocean Thermal Energy Conversion</li> <li>ii. Molten salt technology for TES</li> </ul> | 10 | 3 | 4 |
|            | <ul><li>(b) Write short note on following:</li><li>i. Energy stored in spring</li><li>ii. Electro-magnetic energy storage</li></ul>                                  | 10 | 1 | 6 |